论文标题
闭环机器学习,用于发现新型超导体
Closed-loop machine learning for discovery of novel superconductors
论文作者
论文摘要
新型材料的发现驱动了工业创新,尽管由于“尤里卡!”的不足,发现的速度往往很慢。时刻。这些时刻通常与实验工作的原始目标相切:“意外发现”。在这里,我们证明了有意材料发现的加速度 - 针对感兴趣的材料特性,同时将搜索推广到使用机器学习(ML)方法的大型材料空间。我们展示了针对新型超导材料的闭环ML发现过程,该过程具有从量子计算到传感器再到动力传递的工业应用。通过结束循环,即通过实验测试ML生成的超导性预测的结果,并将数据馈回到ML模型中以进行完善,我们证明了超导体发现的成功率可以增加一倍以上。在四个闭环周期中,我们在ZR-IN-NI系统中发现了一个新的超导体,在训练数据集中重新发现了五个未知的超导体,并确定了新的超导材料的另外两个感兴趣的相图。我们的工作证明了实验反馈在ML驱动的发现中提供的关键作用,并提供了明确的证据,即即使在缺乏潜在物理学的知识的情况下,此类技术也可以加速发现。
The discovery of novel materials drives industrial innovation, although the pace of discovery tends to be slow due to the infrequency of "Eureka!" moments. These moments are typically tangential to the original target of the experimental work: "accidental discoveries". Here we demonstrate the acceleration of intentional materials discovery - targeting material properties of interest while generalizing the search to a large materials space with machine learning (ML) methods. We demonstrate a closed-loop ML discovery process targeting novel superconducting materials, which have industrial applications ranging from quantum computing to sensors to power delivery. By closing the loop, i.e. by experimentally testing the results of the ML-generated superconductivity predictions and feeding data back into the ML model to refine, we demonstrate that success rates for superconductor discovery can be more than doubled. In four closed-loop cycles, we discovered a new superconductor in the Zr-In-Ni system, re-discovered five superconductors unknown in the training datasets, and identified two additional phase diagrams of interest for new superconducting materials. Our work demonstrates the critical role experimental feedback provides in ML-driven discovery, and provides definite evidence that such technologies can accelerate discovery even in the absence of knowledge of the underlying physics.