论文标题

定期p回复序列的渐近扩展的计算误差界限

Computing error bounds for asymptotic expansions of regular P-recursive sequences

论文作者

Dong, Ruiwen, Melczer, Stephen, Mezzarobba, Marc

论文摘要

在过去的几十年中,分析组合和计算机代数领域的改善使确定序列的渐近行为在经常在实践中经常存在的假设下,在很大程度上是一个常规问题,这些序列满足了线性复发与多项式系数的关系。涉及的算法通常采用一个序列,由复发关系和初始项编码,并在渐近扩展中返回前列术语,直至大O误差项。然而,较少的研究是有效的技术,即对渐近误差术语的明确结合。除其他事项外,这种显式界限通常允许用户自动证明序列阳性(枚举和代数组合的活性区域)在正向渐近行为主导任何错误项时表现出索引。在本文中,我们提出了一种用于计算具有严格误差边界的渐近近似值的实用算法,假设该序列的生成序列是具有规则(fuchsian)优势奇异性的微分方程的解。我们的算法大约遵循Flajolet和Odlyzko的奇异性分析方法,只是用明确的误差项代替了渐近扩展派生的所有BIG-O术语。错误术语的计算结合了文献中的分析界限与严格数字和计算机代数的有效技术。我们在SageMath计算机代数系统中实施算法,并在各种应用中展示其使用(包括我们最初的激励示例,解决方案唯一性的canham模型中的属于One属生物膜的形状)。

Over the last several decades, improvements in the fields of analytic combinatorics and computer algebra have made determining the asymptotic behaviour of sequences satisfying linear recurrence relations with polynomial coefficients largely a matter of routine, under assumptions that hold often in practice. The algorithms involved typically take a sequence, encoded by a recurrence relation and initial terms, and return the leading terms in an asymptotic expansion up to a big-O error term. Less studied, however, are effective techniques giving an explicit bound on asymptotic error terms. Among other things, such explicit bounds typically allow the user to automatically prove sequence positivity (an active area of enumerative and algebraic combinatorics) by exhibiting an index when positive leading asymptotic behaviour dominates any error terms. In this article, we present a practical algorithm for computing such asymptotic approximations with rigorous error bounds, under the assumption that the generating series of the sequence is a solution of a differential equation with regular (Fuchsian) dominant singularities. Our algorithm approximately follows the singularity analysis method of Flajolet and Odlyzko, except that all big-O terms involved in the derivation of the asymptotic expansion are replaced by explicit error terms. The computation of the error terms combines analytic bounds from the literature with effective techniques from rigorous numerics and computer algebra. We implement our algorithm in the SageMath computer algebra system and exhibit its use on a variety of applications (including our original motivating example, solution uniqueness in the Canham model for the shape of genus one biomembranes).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源