论文标题
具有相互作用的本地和非本地术语的一类积分功能的紧凑性
Compactness for a class of integral functionals with interacting local and non-local terms
论文作者
论文摘要
对于一类积分函数,我们证明了相对于$γ$ - 连接的紧凑性结果,这些功能表示为局部和非本地术语的总和。主要特征是,在我们的假设下,$γ$限制的本地部分取决于收敛子序列的本地和非本地术语之间的相互作用。结果应用于浓度和均质化问题。
We prove a compactness result with respect to $Γ$-convergence for a class of integral functionals which are expressed as a sum of a local and a non-local term. The main feature is that, under our hypotheses, the local part of the $Γ$-limit depends on the interaction between the local and non-local terms of the converging subsequence. The result is applied to concentration and homogenization problems.