论文标题
频道模拟:有限的区块长度和广播频道
Channel Simulation: Finite Blocklengths and Broadcast Channels
论文作者
论文摘要
我们在有限的块状状态下研究通道模拟,并在最小的模拟成本上以固定误差容忍度的最小模拟成本来确定平滑通道的最大信息作为线性程序的一声相反。我们表明,使用无信号辅助代码可以准确地实现此单发相反,并使用常见的随机性辅助代码实现了大致实现。因此,我们的一次性匡威在渠道编码的互补问题中扮演着与著名的元元观点的相似作用,我们发现这两个范围之间的关系紧密。我们渐近地扩大了离散无内存通道的仿真成本的界限,从而导致二阶以及中等偏差率的扩展,这可以用噪音通道编码已知的通道容量和通道分散来表示。我们的边界暗示了一个众所周知的事实,即一个通道的最佳渐近率在共同的随机性辅助下模拟另一个通道的最佳渐近率是由它们各自的能力的比率给出的。此外,我们的高阶渐近扩张表明,这种可逆性在第二阶崩溃了。我们的技术扩展到离散的无内存广播频道。与难以捉摸的广播通道容量问题形成鲜明对比的是,我们表明,在常见随机性辅助下,广播通道模拟的反向问题可以在广播频道的多部分信息方面对渐近率区域进行有效计算的单个字母表征。
We study channel simulation under common randomness assistance in the finite-blocklength regime and identify the smooth channel max-information as a linear program one-shot converse on the minimal simulation cost for fixed error tolerance. We show that this one-shot converse can be achieved exactly using no-signaling-assisted codes, and approximately achieved using common randomness-assisted codes. Our one-shot converse thus takes on an analogous role to the celebrated meta-converse in the complementary problem of channel coding, and we find tight relations between these two bounds. We asymptotically expand our bounds on the simulation cost for discrete memoryless channels, leading to the second-order as well as the moderate deviation rate expansion, which can be expressed in terms of the channel capacity and channel dispersion known from noisy channel coding. Our bounds imply the well-known fact that the optimal asymptotic rate of one channel to simulate another under common randomness assistance is given by the ratio of their respective capacities. Additionally, our higher-order asymptotic expansion shows that this reversibility falls apart in the second order. Our techniques extend to discrete memoryless broadcast channels. In stark contrast to the elusive broadcast channel capacity problem, we show that the reverse problem of broadcast channel simulation under common randomness assistance allows for an efficiently computable single-letter characterization of the asymptotic rate region in terms of the broadcast channel's multipartite mutual information.