论文标题
结构化移动网页的生成着色
Generative Colorization of Structured Mobile Web Pages
论文作者
论文摘要
颜色是网页的关键设计因素,影响了重要因素,例如观众情绪以及网站的整体信任和满意度。有效的着色需要设计知识和专业知识,但是如果可以通过数据驱动的建模来自动化此过程,那么将有可能进行探索和替代工作流程。但是,由于缺乏网页着色问题,数据集和评估协议的形式化,因此该方向仍然没有被忽视。在这项工作中,我们提出了一个新的数据集,该数据集由可拖动格式的电子商务移动网页组成,该网页是通过简化页面和使用常见的Web浏览器提取规范色彩样式来创建的。然后将网页着色问题正式化为估算给定的网页内容具有给定元素层次结构的合理色彩样式的任务。我们提出了几种基于变压器的方法,这些方法通过准备结构消息传递以捕获元素之间的层次关系来适应此任务。实验结果,包括针对此任务设计的定量评估,证明了我们方法比统计和图像着色方法的优势。该代码可从https://github.com/cyberagentailab/webcolor获得。
Color is a critical design factor for web pages, affecting important factors such as viewer emotions and the overall trust and satisfaction of a website. Effective coloring requires design knowledge and expertise, but if this process could be automated through data-driven modeling, efficient exploration and alternative workflows would be possible. However, this direction remains underexplored due to the lack of a formalization of the web page colorization problem, datasets, and evaluation protocols. In this work, we propose a new dataset consisting of e-commerce mobile web pages in a tractable format, which are created by simplifying the pages and extracting canonical color styles with a common web browser. The web page colorization problem is then formalized as a task of estimating plausible color styles for a given web page content with a given hierarchical structure of the elements. We present several Transformer-based methods that are adapted to this task by prepending structural message passing to capture hierarchical relationships between elements. Experimental results, including a quantitative evaluation designed for this task, demonstrate the advantages of our methods over statistical and image colorization methods. The code is available at https://github.com/CyberAgentAILab/webcolor.