论文标题
凯恩 - 梅尔模型的手性和(通用)螺旋边缘状态的显式推导:波函数,分散关系和自旋旋转的闭合表达式
Explicit derivation of the chiral and (generic) helical edge states for the Kane-Mele model: Closed expressions for the wave function, dispersion relation, and spin rotation
论文作者
论文摘要
虽然拓扑绝缘子的最重要和最有趣的特征之一是边缘状态的存在,但仍然缺乏某些著名拓扑模型的边缘状态的封闭形式表达式。在这里,我们专注于具有和不使用Rashba自旋轨道耦合的Kane-Mele模型,作为一个众所周知的模型,以描述$ \ Mathbb {Z} _2 _2 $拓扑绝缘子的二维版本,以分析其边缘状态的属性。通过考虑具有锯齿形边界的蜂窝晶格上的紧密结合模型并引入了扰动方法,我们可以为波函数,能量分散关系和(通用)螺旋边缘状态的自旋旋转提供显式表达式。为此,我们首先将色带几何形状的边缘状态映射到具有动量依赖的能量参数的有效的两腿阶梯模型中。然后,我们将系统的哈密顿量分为不受干扰的部分和扰动。不受干扰的部分具有平坦的能量谱,可以准确求解,这使我们能够扰动地考虑汉密尔顿的其余部分。令人惊讶的是,一阶扰动中产生的能量分散关系与数值在非常广泛的波数范围内非常吻合。我们的扰动框架还允许在由于Rashba旋转轨道相互作用而没有轴向旋转对称性的情况下,在没有轴向旋转对称性的情况下,为动量边缘状态的旋转旋转而得出明确的形式。
While one of the most important and intriguing features of the topological insulators is the presence of edge states, the closed-form expressions for the edge states of some famous topological models are still lacking. Here, we focus on the Kane-Mele model with and without Rashba spin-orbit coupling as a well-known model to describe a two-dimensional version of the $\mathbb{Z}_2$ topological insulator to study the properties of its edge states analytically. By considering the tight-binding model on a honeycomb lattice with zigzag boundaries and introducing a perturbative approach, we derive explicit expressions for the wave functions, energy dispersion relations, and the spin rotations of the (generic) helical edge states. To this end, we first map the edge states of the ribbon geometry into an effective two-leg ladder model with momentum-dependent energy parameters. Then, we split the Hamiltonian of the system into an unperturbed part and a perturbation. The unperturbed part has a flat-band energy spectrum and can be solved exactly which allows us to consider the remaining part of the Hamiltonian perturbatively. The resulting energy dispersion relation within the first-order perturbation, surprisingly, is in excellent agreement with the numerical spectra over a very wide range of wavenumbers. Our perturbative framework also allows deriving an explicit form for the rotation of the spins of the momentum edge states in the absence of axial spin symmetry due to the Rashba spin-orbit interaction.