论文标题

使用擦除渠道中的多源系统中信息时代的编码增益

Coding Gain for Age of Information in a Multi-source System with Erasure Channel

论文作者

Singhvi, Shubhransh, Mankar, Praful D.

论文摘要

在我们的工作中,我们在多源系统中研究信息时代($ \ aoi $),其中$ k $源通过通用聚集器节点通过带有数据包交付错误的通道传输其时间变化过程的更新。我们分析了$(α,β,ε_0,ε_1)的$ \ aoi $ - Gilbert-elliot($ \ ge $)包装擦除频道,并带有圆形旋转计划策略。我们在聚合器中采用最大距离可分离($ \ mds $)方案来编码多源更新。我们表征了$ \ mds $编码系统的平均$ \ aoi $。 We further show that the \emph{optimal coding rate} that achieves maximum \emph{coding gain} over the uncoded system is $n(1-\pers)-\smallO(n)$, where $\pers \triangleq \fracβ{α+β}ε_0 + \fracα{α+β}ε_1$, and this maximum coding gain is $(1+ \ pers)/(1+ \ smallo(1))$。

In our work, we study the age of information ($\AoI$) in a multi-source system where $K$ sources transmit updates of their time-varying processes via a common-aggregator node to a destination node through a channel with packet delivery errors. We analyze $\AoI$ for an $(α, β, ε_0, ε_1)$-Gilbert-Elliot ($\GE$) packet erasure channel with a round-robin scheduling policy. We employ maximum distance separable ($\MDS$) scheme at aggregator for encoding the multi-source updates. We characterize the mean $\AoI$ for the $\MDS$ coded system for the case of large blocklengths. We further show that the \emph{optimal coding rate} that achieves maximum \emph{coding gain} over the uncoded system is $n(1-\pers)-\smallO(n)$, where $\pers \triangleq \fracβ{α+β}ε_0 + \fracα{α+β}ε_1$, and this maximum coding gain is $(1+\pers)/(1+\smallO(1))$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源