论文标题

学习在不均匀的流场中有效游泳

Learning to swim efficiently in a nonuniform flow field

论文作者

Sankaewtong, Krongtum, Molina, John J., Turner, Matthew S., Yamamoto, Ryoichi

论文摘要

Microswimmers可以通过传感机械队列获得有关周围流体的信息。然后,他们可以根据这些信号进行导航。我们通过将深度加强学习与直接数值模拟结合以解决流体动力学来分析这一导航。我们研究如何使用局部和非本地信息来训练游泳者,以在不均匀的流场(尤其是锯齿形剪切流量)中实现特定的游泳任务。游泳任务是(1)学习如何在涡旋方向上游泳,(2)剪切梯度方向以及(3)剪切流动方向。我们发现,为了达到(1,2)的最佳策略,需要访问有关游泳者瞬时方向的实验室框架信息。但是,似乎需要有关转移速度和旋转速度的信息才能实现(3)。受生物微生物的启发,我们还考虑了游泳者感知局部信息,即表面流体动力的情况以及信号方向的情况。这可能对应于重力,或者对于带有光传感器的微生物,是光源。在这种情况下,我们表明游泳者可以作为游泳者达到可相当的表现,并可以访问实验室框架变量。我们还分析了不同游泳模式的作用,即推动者,拉普勒和中性游泳者。

Microswimmers can acquire information on the surrounding fluid by sensing mechanical queues. They can then navigate in response to these signals. We analyse this navigation by combining deep reinforcement learning with direct numerical simulations to resolve the hydrodynamics. We study how local and non-local information can be used to train a swimmer to achieve particular swimming tasks in a non-uniform flow field, in particular a zig-zag shear flow. The swimming tasks are (1) learning how to swim in the vorticity direction, (2) the shear-gradient direction, and (3) the shear flow direction. We find that access to lab frame information on the swimmer's instantaneous orientation is all that is required in order to reach the optimal policy for (1,2). However, information on both the translational and rotational velocities seem to be required to achieve (3). Inspired by biological microorganisms we also consider the case where the swimmers sense local information, i.e. surface hydrodynamic forces, together with a signal direction. This might correspond to gravity or, for micro-organisms with light sensors, a light source. In this case, we show that the swimmer can reach a comparable level of performance as a swimmer with access to lab frame variables. We also analyse the role of different swimming modes, i.e. pusher, puller, and neutral swimmers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源