论文标题

使用控制屏障功能的端到端模仿学习安全保证

End-to-End Imitation Learning with Safety Guarantees using Control Barrier Functions

论文作者

Cosner, Ryan K., Yue, Yisong, Ames, Aaron D.

论文摘要

模仿学习(IL)是一种学习范式,可用于合成模拟专家(用户或控制算法)所证明的复杂系统的控制器。尽管它们很受欢迎,但IL方法通常缺乏安全性的保证,这限制了其对复杂安全系统的效用。在这项工作中,我们认为安全性为设置不变,以及由控制屏障功能(CBF)赋予的相关正式保证。我们开发了使用CBF的强大安全专家控制器,可用于学习具有安全保证的端到端控制器(我们称为符合CBF的控制器)。这些保证是从投入到国家安全(ISSF)的角度提出的,该安全性在骚乱的背景下考虑了安全性,其中证明IL使用可靠的安全专家演示导致ISSF导致ISSF,而与学习问题的属性直接相关的干扰。我们证明了这些安全保证在基于视觉的端到端控制倒置和赛道上驾驶汽车的端到端控制中。

Imitation learning (IL) is a learning paradigm which can be used to synthesize controllers for complex systems that mimic behavior demonstrated by an expert (user or control algorithm). Despite their popularity, IL methods generally lack guarantees of safety, which limits their utility for complex safety-critical systems. In this work we consider safety, formulated as set-invariance, and the associated formal guarantees endowed by Control Barrier Functions (CBFs). We develop conditions under which robustly-safe expert controllers, utilizing CBFs, can be used to learn end-to-end controllers (which we refer to as CBF-Compliant controllers) that have safety guarantees. These guarantees are presented from the perspective of input-to-state safety (ISSf) which considers safety in the context of disturbances, wherein it is shown that IL using robustly safe expert demonstrations results in ISSf with the disturbance directly related to properties of the learning problem. We demonstrate these safety guarantees in simulated vision-based end-to-end control of an inverted pendulum and a car driving on a track.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源