论文标题
基于瞬时物理的地面运动图,使用还原阶建模
Instantaneous physics-based ground motion maps using reduced-order modeling
论文作者
论文摘要
基于物理的地震地面运动模拟可用于补充记录的地面运动。但是,执行数值模拟的计算费用阻碍了其适用于需要实时解决方案或解决不同地震来源的解决方案集合的任务。为了实现基于物理的快速解决方案,我们提出了基于插值的正交分解(POD)的减少阶建模(ROM)方法,以预测峰值地面速度(PGV)。作为演示者,我们考虑了使用具有不同深度和焦点机制的双层偶源来源的2008 MW 5.4 Chino Hills地震位置的区域3D波传播模拟的PGV。这些模拟解决频率$ \ leq $ 1.0 Hz,包括地形,粘弹性衰减和S波速度$ \ geq $ 500 m/s。我们评估了插值POD ROM的准确性,这是近似方法的函数。比较径向基函数(RBF),多层感知神经网络,随机森林和$ k $ - 最近的邻居,我们发现在针对独立数据集进行测试时,RBF插值会产生最低错误($ \ $ \ $ 0.1 cm/s)。我们还发现,评估ROM的$ 10^7-10^8 $倍,比波传播模拟快。我们使用ROM来生成一百万个不同焦点机制的PGV图,其中我们确定了潜在的损坏地面运动并量化了预测PGV的焦点机制,深度和准确性之间的相关性。我们的结果表明,ROM可以从具有可变源属性,地形和复杂地下结构的波传播模拟中快速准确地近似PGV。
Physics-based simulations of earthquake ground motion are useful to complement recorded ground motions. However, the computational expense of performing numerical simulations hinders their applicability to tasks that require real-time solutions or ensembles of solutions for different earthquake sources. To enable rapid physics-based solutions, we present a reduced-order modeling (ROM) approach based on interpolated proper orthogonal decomposition (POD) to predict peak ground velocities (PGVs). As a demonstrator, we consider PGVs from regional 3D wave propagation simulations at the location of the 2008 Mw 5.4 Chino Hills earthquake using double-couple sources with varying depth and focal mechanisms. These simulations resolve frequencies $\leq$ 1.0 Hz and include topography, viscoelastic attenuation, and S-wave speeds $\geq$ 500 m/s. We evaluate the accuracy of the interpolated POD ROM as a function of the approximation method. Comparing the radial basis function (RBF), multilayer perceptron neural network, random forest, and $k$-nearest neighbor, we find that the RBF interpolation gives the lowest error ($\approx$ 0.1 cm/s) when tested against an independent dataset. We also find that evaluating the ROM is $10^7-10^8$ times faster than the wave propagation simulations. We use the ROM to generate PGV maps for one million different focal mechanisms, in which we identify potentially damaging ground motions and quantify correlations between focal mechanism, depth, and accuracy of the predicted PGV. Our results demonstrate that the ROM can rapidly and accurately approximate the PGV from wave propagation simulations with variable source properties, topography, and complex subsurface structure.