论文标题

Sobolev空间的痕迹到不规则的度量测量空间子集

Traces of Sobolev spaces to irregular subsets of metric measure spaces

论文作者

Tyulenev, Alexander

论文摘要

给定(1,\ infty)$,让$(\ operatorName {x},\ pereratatorName {d},μ)$是一个度量度量空间,并在本地均匀倍增$μ$支撑弱本地$(1,p)$ - POINCARRE的平等。对于[0,p)$中的每个$θ\,我们表征了Sobolev $ W^{1} _ {p}(\ operatorAtorName {x})$ - 降低codimension- $θ$ content-contraceimension- $θ$常规封闭的子集$ s \ subset $ subset \ perperatoRateOrname {x x} $的空间。特别是,如果空间$(\ operatorName {x},\ operatorname {d},μ)$ as ahlfors $ q $ - 某些$ q \ geq 1 $和$ p \ in(q,\ infty)$的geq \ geq 1 $和$ p \ in(q,\ infty)$ $ w^{1} _ {p}(\ operatorname {x})$ - 任意封闭的非空置设置$ s \ subset \ operatatorName {x} $的空间。

Given $p \in (1,\infty)$, let $(\operatorname{X},\operatorname{d},μ)$ be a metric measure space with uniformly locally doubling measure $μ$ supporting a weak local $(1,p)$-Poincaré inequality. For each $θ\in [0,p)$, we characterize the trace space of the Sobolev $W^{1}_{p}(\operatorname{X})$-space to lower codimension-$θ$ content regular closed subsets $S \subset \operatorname{X}$. In particular, if the space $(\operatorname{X},\operatorname{d},μ)$ is Ahlfors $Q$-regular for some $Q \geq 1$ and $p \in (Q,\infty)$, then we get an intrinsic description of the trace-space of the Sobolev $W^{1}_{p}(\operatorname{X})$-space to arbitrary closed nonempty set $S \subset \operatorname{X}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源