论文标题
关于不相称的薄膜均质化的注释
A note on the homogenization of incommensurate thin films
论文作者
论文摘要
在膜中间平面的方向上,能量的定期性或几乎有周期性的假设获得了薄膜的尺寸降低均匀化结果。在本说明中,我们将薄膜视为薄膜,作为具有可能不相同的中间平面的周期性培养基的部分。也就是说,不包含$ 0 $以外的时间。与用于准晶体使用的剪切参数类似的几何参数几乎有周期性参数可以证明一般的均质化结果。
Dimension-reduction homogenization results for thin films have been obtained under hypotheses of periodicity or almost-periodicity of the energies in the directions of the mid-plane of the film. In this note we consider thin films, obtained as sections of a periodic medium with a mid-plane that may be incommensurate; that is, not containing periods other than $0$. A geometric almost-periodicity argument similar to the cut-and-project argument used for quasicrystals allows to prove a general homogenization result.