论文标题

使用复杂系统的储层计算

Reservoir Computing Using Complex Systems

论文作者

Shanaz, N. Rasha, Murali, K., Muruganandam, P.

论文摘要

储层计算是一个新兴的机器学习框架,是利用物理系统进行计算的多功能选项。在本文中,我们演示了如何使用简单的电子电路制成的单个节点储层进行计算,并探索可用的选项以提高物理储量的计算能力。我们使用回忆性混沌振荡器作为水库构建了一个储层计算系统。我们选择两个可用的超参数来找到水库的最佳工作状态,从而产生两个储层版本。我们比较了在三个非颞任务中的两个储层的性能:近似于两个非差异多项式和洛伦兹时间序列的混乱轨迹。我们还展示了物理系统的动力学如何在储层的超参数中发挥直接作用,因此如何在储层的预测能力中起着作用。

Reservoir Computing is an emerging machine learning framework which is a versatile option for utilising physical systems for computation. In this paper, we demonstrate how a single node reservoir, made of a simple electronic circuit, can be employed for computation and explore the available options to improve the computational capability of the physical reservoirs. We build a reservoir computing system using a memristive chaotic oscillator as the reservoir. We choose two of the available hyperparameters to find the optimal working regime for the reservoir, resulting in two reservoir versions. We compare the performance of both the reservoirs in a set of three non-temporal tasks: approximating two non-chaotic polynomials and a chaotic trajectory of the Lorenz time series. We also demonstrate how the dynamics of the physical system plays a direct role in the reservoir's hyperparameters and hence in the reservoir's prediction ability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源