论文标题
具有decihertz天文台及其宇宙学的偏心重力波的参数估计
Parameter estimation of eccentric gravitational waves with a decihertz observatory and its cosmological implications
论文作者
论文摘要
紧凑型二进制文件的偏心率可以改善重力波(GWS)的参数估计。在本文中,我们首先研究了使用Decihertz天文台的偏心GW的参数估计。我们考虑了Decigo配置的两种情况,即具有其设计灵敏度和B-Decigo的一个Decigo群,它也具有一个群集,但具有较低的灵敏度作为比较。我们采用Fisher矩阵来估计参数错误。通过嘲笑GWTC-3中的典型二进制文件,我们发现非散布偏心率几乎可以显着改善几乎所有波形参数的估计。特别是,典型二进制黑洞(BBH)的定位可以实现$ \ MATHCAL {O}(10-10^{3.5})$改进的因子,当初始偏心$ e_0 = 0.4 $ 0.1 hz时。二进制中子星(BNS)和中子恒星 - 黑色孔二进制(NSBH)的精确定位,以及BBH在中间偏心率中大大改善BBH的定位,激发了我们构建了宿主星系可以独特地标识的金色黑暗肮脏的目录。我们发现,只有一个Decigo群以其设计敏感性运行1年,可以观察到数百个金色的BN,NSBH和数十个金色的深色BBH。偏心率可以将黄金深色BBH的人口从$ \ sim 7〜(e_0 = 0)$增加到$ \ sim 65〜(e_0 = 0.2)$。黄金深色BBH事件的这种增加可以提高哈勃恒定测量的精度,从2.06 \%\%\%,物质密度参数从64 \%\%降低到$λ$ CDM模型中的16 \%。通过GW传播的现象学参数化,改良重力的约束可以从6.2 \%提高到1.6 \%。我们的结果表明,偏心率对GW事件的检测和参数估计的显着意义,从而使我们能够精确探测宇宙。
Eccentricity of compact binaries can improve the parameter estimation of gravitational waves (GWs). In this paper, we first investigate the parameter estimation of eccentric GWs with decihertz observatory. We consider two scenarios for the configuration of DECIGO, i.e., the one cluster of DECIGO with its design sensitivity and B-DECIGO which also has one cluster but with inferior sensitivity as a comparison. We adopt the Fisher matrix to estimate the parameter errors. By mocking up the typical binaries in GWTC-3, we find a nonvanishing eccentricity can significantly improve the estimation for almost all waveform parameters. In particular, the localization of typical binary black holes (BBH) can achieve $\mathcal{O}(10-10^{3.5})$ factors of improvement when the initial eccentricity $e_0=0.4$ at 0.1 Hz. The precise localization of binary neutron stars (BNS) and neutron star--black hole binaries (NSBH), together with the large improvement of localization of BBH from eccentricity in the mid-band, inspire us to construct the catalogs of golden dark sirens whose host galaxies can be uniquely identified. We find that with only one cluster of DECIGO running 1 year in its design sensitivity, hundreds of golden dark BNS, NSBH, and tens of golden dark BBH can be observed. Eccentricity can greatly increase the population of golden dark BBH from $\sim 7~(e_0=0)$ to $\sim 65~(e_0=0.2)$. Such an increase of population of golden dark BBH events can improve the precision of Hubble constant measurement from 2.06\% to 0.68\%, matter density parameter from 64\% to 16\% in $Λ$CDM model. Through the phenomenological parameterization of GW propagation, the constraints of modified gravity can be improved from 6.2\% to 1.6\%. Our results show the remarkable significance of eccentricity for the detection and parameter estimation of GW events, allowing us to probe the Universe precisely.