论文标题

有效的动力学晶格Boltzmann三维Hall-MHD湍流模拟

Efficient kinetic Lattice Boltzmann simulation of three-dimensional Hall-MHD Turbulence

论文作者

Foldes, Raffaello, Lévêque, Emmanuel, Marino, Raffaele, Pietropaolo, Ermanno, De Rosis, Alessandro, Telloni, Daniele, Feraco, Fabio

论文摘要

在Hall-Magnetohydrodnymics(Hall-MHD)中模拟等离子体是在天体物理{frameworks}和{融合机}中开发的复杂非线性动力学研究的有价值的{方法。考虑到霍尔电场在{计算上非常具有挑战性,因为}涉及{}的集成一个额外的术语,与$ \ bnabla \ times((((\ bnabla \ times \ times \ times \ times \ athbf {b})\ times \ times \ times \ times \ times \ times \ mathbf {b})$。 {后者以小尺度(离子和电子惯性尺度之间)的磁场$ \ mathbf {b} $的含量,{需要}非常高的分辨率}在空间和时间中都非常高,以正确地{以正确地描述其动态。 new}代码,\ textbf {\ textsc {f}} ast \ textbf {\ textsc {l}} atice-boltzmann \ textbf {\ textsc {\ textsc {a}} lgorithM (\ textsc {flame})。 \ textsc {Flame}代码集成了与两个动力学方案耦合的晶格单元中的等离子动力学,一个用于流体质子(包括Lorentz力),另一个用于求解描述磁场演化的感应方程。在这里,对新开发的算法进行了针对耗散霍尔-MHD方程的分析波分析的测试,指出了其稳定性和二阶收敛,并在广泛的控制参数上进行了测试。最终将模拟等离子体的光谱属性与从成熟的伪谱代码\ textsc {ghost}获得的数值解决方案获得的光谱属性进行了比较。此外,我们提出的LB模拟,改变了Hall参数,突出了从MHD到Hall-MHD制度的过渡,与在太阳风中测得的磁场光谱非常吻合。

Simulating plasmas in the Hall-MagnetoHydroDynamics (Hall-MHD) regime represents a valuable {approach for the investigation of} complex non-linear dynamics developing in astrophysical {frameworks} and {fusion machines}. Taking into account the Hall electric field is {computationally very challenging as} it involves {the integration of} an additional term, proportional to $\bNabla \times ((\bNabla\times\mathbf{B})\times \mathbf{B})$ in the Faraday's induction {law}. {The latter feeds back on} the magnetic field $\mathbf{B}$ at small scales (between the ion and electron inertial scales), {requiring} very high resolution{s} in both space and time {in order to properly describe its dynamics.} The computational {advantage provided by the} kinetic Lattice Boltzmann (LB) approach is {exploited here to develop a new} code, the \textbf{\textsc{F}}ast \textbf{\textsc{L}}attice-Boltzmann \textbf{\textsc{A}}lgorithm for \textbf{\textsc{M}}hd \textbf{\textsc{E}}xperiments (\textsc{flame}). The \textsc{flame} code integrates the plasma dynamics in lattice units coupling two kinetic schemes, one for the fluid protons (including the Lorentz force), the other to solve the induction equation describing the evolution of the magnetic field. Here, the newly developed algorithm is tested against an analytical wave-solution of the dissipative Hall-MHD equations, pointing out its stability and second-order convergence, over a wide range of the control parameters. Spectral properties of the simulated plasma are finally compared with those obtained from numerical solutions from the well-established pseudo-spectral code \textsc{ghost}. Furthermore, the LB simulations we present, varying the Hall parameter, highlightthe transition from the MHD to the Hall-MHD regime, in excellent agreement with the magnetic field spectra measured in the solar wind.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源