论文标题

格里菲斯的高度和铅笔

Griffiths heights and pencils of hypersurfaces

论文作者

Mordant, Thomas

论文摘要

Hodge结构在投影曲线上的变化的Griffith高度定义为其规范线束的程度,如格里菲斯(Griffiths)所定义,并由彼得斯(Peters)概括以允许不良的还原点。它可以看作是在数字字段上附着在纯动机上的加藤高度的几何类似物。在本文中,我们建立了各种公式,表达了在特征类别方面的投影复杂性超曲面铅笔的中等维度同谋的高度。

The Griffiths height of a variation of Hodge structures over a projective curve is defined as the degree of its canonical line bundle, as defined by Griffiths and generalized by Peters to allow bad reduction points. It may be seen as a geometric analog of the Kato height attached to pure motives over number fields. In this paper, we establish various formulas expressing the Griffiths height of the middle-dimensional cohomology of a pencil of projective complex hypersurfaces in terms of characteristic classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源