论文标题

在各向异性kitaev-gamma模型中,延长的量子自旋液体具有旋子样激发

Extended Quantum Spin Liquid with Spinon-like Excitations in an Anisotropic Kitaev-Gamma Model

论文作者

Gohlke, Matthias, Pelayo, Jose Carlos, Suzuki, Takafumi

论文摘要

在近年来,无论是在理论上还是实验上,基塔夫材料中量子自旋液相的表征一直是一项密集研究的主题。大多数理论研究都集中在各向同性相互作用的模型上,其耦合强度在每个键上等效,以简化问题。在这里,我们在蜂窝晶格上研究了一个扩展的自旋-1/2 kitaev- $γ$模型,并具有附加的调整参数,该参数控制了其中一种键上的耦合强度:我们将隔离的kitaev-$γ$链的极限连接起来,该链条的界限已知出现了一个出现的$ su(2)_1 $ su(2)_1 $ tomonaga-liquiles liquiles liquiles liques liques liques liques liques liques liques liques liques liques liques liques liques liques liques yang yang yang yang yang yang yang yang yang。物理。莱特牧师。 {\ bf 124},147205(2020)],用于二维模型。我们报告了一个实例,其中tomonaga-luttinger液体持续存在有限的链间耦合。量子自旋液相与\ emph {滑动Luttinger液体}相比,与Kitaev自旋液体不同。这种量子自旋液相具有类似于抗抗病性海森堡链的旋子样激发。我们以互补的方式对各种群集几何形状上使用数值精确的对角线化和密度矩阵重新归一化组来克服有限尺寸的限制。

The characterization of quantum spin liquid phases in Kitaev materials has been a subject of intensive studies over the recent years, both theoretically and experimentally. Most theoretical studies have focused on an isotropically interacting model with its coupling strength being equivalent on each bond in an attempt to simplify the problem. Here, we study an extended spin-1/2 Kitaev-$Γ$ model on a honeycomb lattice with an additional tuning parameter that controls the coupling strength on one of the bonds: we connect the limit of isolated Kitaev-$Γ$ chains, which is known to exhibit an emergent $SU(2)_1$ Tomonaga-Luttinger liquid phase [Yang et al. Phys. Rev. Lett. {\bf 124}, 147205 (2020)], to the two-dimensional model. We report on an instance, in which the Tomonaga-Luttinger liquid persists for finite inter-chain coupling. A quantum spin liquid phase develops in analogy to \emph{sliding Luttinger liquids} that differs from the Kitaev spin liquid. This quantum spin liquid phase features spinon-like excitations similar to those of the antiferromatnetic Heisenberg chain. We use numerical Exact Diagonalization and Density Matrix Renormalization Group on various cluster geometries in a complementary way to overcome finite-size limitations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源