论文标题

连续素数之间存在很大差异

On large differences between consecutive primes

论文作者

Järviniemi, Olli

论文摘要

我们表明,$$ \ sum _ {\ supAck {p_n \ in [x,2x] \\ p_ {n+1} - p_n \ ge x^{1/2}}}}}}}(p_ {n+1} - p_n) - p_n) - p_n) [x,2x] \\ p_ {n+1} - p_n \ ge x^{0.45}}}}}}}}(p_ {n+1} - p_n)\ ll x^{0.63+ε},$ p_n $ p_n $是$ n $ n $ n $ th $ th $ th prime。证明将希思·布朗(Heath-Brown)最近的作品与哈曼(Harman)的筛子结合在一起,改善并扩大了他的结果。我们将结果应用于代表性函数,素数数字的二进制数字以及通过乘法函数的真实近似。

We show that $$\sum_{\substack{p_n \in [x, 2x] \\ p_{n+1} - p_n \ge x^{1/2}}} (p_{n+1} - p_n) \ll x^{0.57+ε}$$ and $$\sum_{\substack{p_n \in [x, 2x] \\ p_{n+1} - p_n \ge x^{0.45}}} (p_{n+1} - p_n) \ll x^{0.63+ε},$$ where $p_n$ is the $n$th prime number. The proof combines Heath-Brown's recent work with Harman's sieve, improving and extending his results. We give applications of the results to prime-representing functions, binary digits of primes and approximation of reals by multiplicative functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源