论文标题
嵌入式图的tutte多项式的不可约性
Irreducibility of the Tutte polynomial of an embedded graph
论文作者
论文摘要
我们证明,嵌入在可定向表面的图的功能区多项式在且仅当嵌入式图既不是不相交的联合,也不是嵌入式图的联接时。该结果类似于以下事实:图形的tutte多项式在且仅当图形连接且不可分割时才不可修复。
We prove that the ribbon graph polynomial of a graph embedded in an orientable surface is irreducible if and only if the embedded graph is neither the disjoint union nor the join of embedded graphs. This result is analogous to the fact that the Tutte polynomial of a graph is irreducible if and only if the graph is connected and non-separable.