论文标题
用于硅硅硅微流体的无膜热流传感器
Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics
论文作者
论文摘要
实验室片(LOC)构成了新一代便携式分析系统的基础。 LOC允许在微流体芯片上操纵液体试剂的超低流量和多步反应,该芯片需要一种坚固而精确的仪器来控制芯片上液体的流动。但是,市售流量表似乎是独立的选项,添加了大量的死管以连接到芯片。此外,它们中的大多数不能与微流体通道相同的技术循环中制造。在这里,我们报告了无膜的微流体热流传感器(MTF),该传感器(MTFS)可以通过微通道拓扑结合到硅玻璃微流体芯片中。我们提出了一种无膜设计的设计,该设计具有从微流体通道和100毫米瓦金硅玻璃制造途径中分离出的薄膜热敏感元素。它确保MTF与腐蚀性液体的兼容性,这对于生物应用至关重要。提出了最佳灵敏度和测量范围的MTFS设计规则。描述了一种自动耐热敏感元件校准的方法。通过参考科里奥利流量传感器,对设备参数进行了数百小时的实验测试,其相对流量误差在2-30 ul/min的范围内以及次秒时间响应范围内的相对流误差小于5%。
Lab-on-a-chip (LOC) forms the basis of the new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commercially available flow meters appear to be a standalone option adding a significant dead volume of tubes for connection to the chip. Furthermore, most of them cannot be fabricated within the same technological cycle as microfluidic channels. Here, we report on a membrane-free microfluidic thermal flow sensor (MTFS) that can be integrated into a silicon-glass microfluidic chip with a microchannel topology. We propose a membrane-free design with thin-film thermo-resistive sensitive elements isolated from microfluidic channels and 100 mm wafers silicon-glass fabrication route. It ensures MTFS compatibility with corrosive liquids, which is critically important for biological applications. MTFS design rules for the best sensitivity and measurement range are proposed. A method for automated thermo-resistive sensitive elements calibration is described. The device parameters are experimentally tested for hundreds of hours with a reference Coriolis flow sensor demonstrating a relative flow error of less than 5% within the range of 2-30 uL/min along with a sub-second time response.