论文标题

通过继电器通信差异私人分散的优化

Differentially Private Decentralized Optimization with Relay Communication

论文作者

Wang, Luqing, Guo, Luyao, Yang, Shaofu, Shi, Xinli

论文摘要

大规模网络环境中的安全问题变得越来越重要。为了从设计的角度进一步提高算法安全性,我们引入了一种新措施:隐私泄漏频率(PLF),该方法揭示了算法的通信与隐私泄漏之间的关系,表明较低的PLF对应于较低的隐私预算。基于这种断言,提议一种新颖的私人分散原始化原始化算法,即DP-Recal,以利用操作员分裂方法和中继通信机制的优势,以减少PLF,从而减少整体隐私预算。据我们所知,与现有的差异私有算法相比,DP-Recal提出了出色的隐私性能和沟通复杂性。此外,在不协调的网络无关的步骤中,我们证明了DP-RECAL对于一般凸问题的收敛性,并在度量次级次数下建立线性收敛速率。对最小二乘问题的评估分析和现实世界数据集的数值实验验证了我们的理论结果,并证明DP-RECAL可以捍卫某些经典的梯度泄漏攻击。

Security concerns in large-scale networked environments are becoming increasingly critical. To further improve the algorithm security from the design perspective of decentralized optimization algorithms, we introduce a new measure: Privacy Leakage Frequency (PLF), which reveals the relationship between communication and privacy leakage of algorithms, showing that lower PLF corresponds to lower privacy budgets. Based on such assertion, a novel differentially private decentralized primal--dual algorithm named DP-RECAL is proposed to take advantage of operator splitting method and relay communication mechanism to experience less PLF so as to reduce the overall privacy budget. To the best of our knowledge, compared with existing differentially private algorithms, DP-RECAL presents superior privacy performance and communication complexity. In addition, with uncoordinated network-independent stepsizes, we prove the convergence of DP-RECAL for general convex problems and establish a linear convergence rate under the metric subregularity. Evaluation analysis on least squares problem and numerical experiments on real-world datasets verify our theoretical results and demonstrate that DP-RECAL can defend some classical gradient leakage attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源