论文标题

PALETTENERF:基于调色板的神经辐射场的外观编辑

PaletteNeRF: Palette-based Appearance Editing of Neural Radiance Fields

论文作者

Kuang, Zhengfei, Luan, Fujun, Bi, Sai, Shu, Zhixin, Wetzstein, Gordon, Sunkavalli, Kalyan

论文摘要

神经辐射场的最新进展已使复杂场景的高保真3D重建用于新型视图综合。但是,在维持光真相的同时,如何有效地编辑此类表示形式的外观仍然没有被忽视。 在这项工作中,我们提出了Palettenerf,这是一种基于3D颜色分解的神经辐射场(NERF)的新颖方法。我们的方法将每个3D点的外观分解为基于调色板的碱基的线性组合(即由一组由NERF型函数定义的3D分割)。尽管我们的基于调色板的碱是无关的,但我们还预测了一个依赖视图的功能来捕获颜色残差(例如,镜面阴影)。在培训期间,我们共同优化了基本功能和调色板,还引入了新型正规化器,以鼓励分解的空间连贯性。 我们的方法允许用户通过修改调色板有效地编辑3D场景的外观。我们还使用压缩语义功能扩展了框架,以进行语义感知的外观编辑。我们证明,对于复杂的现实世界场景的外观编辑,我们的技术优于基线方法。

Recent advances in neural radiance fields have enabled the high-fidelity 3D reconstruction of complex scenes for novel view synthesis. However, it remains underexplored how the appearance of such representations can be efficiently edited while maintaining photorealism. In this work, we present PaletteNeRF, a novel method for photorealistic appearance editing of neural radiance fields (NeRF) based on 3D color decomposition. Our method decomposes the appearance of each 3D point into a linear combination of palette-based bases (i.e., 3D segmentations defined by a group of NeRF-type functions) that are shared across the scene. While our palette-based bases are view-independent, we also predict a view-dependent function to capture the color residual (e.g., specular shading). During training, we jointly optimize the basis functions and the color palettes, and we also introduce novel regularizers to encourage the spatial coherence of the decomposition. Our method allows users to efficiently edit the appearance of the 3D scene by modifying the color palettes. We also extend our framework with compressed semantic features for semantic-aware appearance editing. We demonstrate that our technique is superior to baseline methods both quantitatively and qualitatively for appearance editing of complex real-world scenes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源