论文标题
多组分多相系统的基于赋值的晶格玻尔兹曼方法
A fugacity-based Lattice Boltzmann method for multicomponent multiphase systems
论文作者
论文摘要
自由能模型可以将晶格Boltzmann方法扩展到多相系统。但是,缺乏能够模拟具有部分混乱性的多组分多相流体的模型。此外,现有模型不能推广以纪念任何选择状态的多组分方程提供的热力学信息。在本文中,我们介绍了一个自由能晶格玻尔兹曼模型,其中强迫项由该物种的散发性确定,该物种的散发性是将物种部分压与化学势计算联系起来的热力学特性。通过这样做,我们能够对部分混溶的流体进行多组分多相模拟,并将其与任何感兴趣状态的多组分方程一起使用。我们在各种温度和压力条件下,针对两种和三组分混合物的蒸气液平均衡的病例测试了这种基于佳能的晶格Boltzmann方法。我们证明该模型能够可靠地重现通过多组分热力学预测的相位密度和组成,并可以以高度准确性再现不同的特征压力组合和温度组合信封。我们还证明该模型可以在动态条件下提供准确的预测。
The free energy model can extend the Lattice Boltzmann method to multiphase systems. However, there is a lack of models capable of simulating multicomponent multiphase fluids with partial miscibility. In addition, existing models cannot be generalized to honor thermodynamic information provided by any multicomponent equation of state of choice. In this paper, we introduce a free energy Lattice Boltzmann model where the forcing term is determined by the fugacity of the species, the thermodynamic property that connects species partial pressure to chemical potential calculations. By doing so, we are able to carry out multicomponent multiphase simulations of partially miscible fluids and generalize the methodology for use with any multicomponent equation of state of interest. We test this fugacity-based Lattice Boltzmann method for the cases of vapor-liquid equilibrium for two and three-component mixtures in various temperature and pressure conditions. We demonstrate that the model is able to reliably reproduce phase densities and compositions as predicted by multicomponent thermodynamics and can reproduce different characteristic pressure-composition and temperature-composition envelopes with a high degree of accuracy. We also demonstrate that the model can offer accurate predictions under dynamic conditions.