论文标题
在非自动周期性高斯电路中向区域法律纠缠过渡
Volume-law to area-law entanglement transition in a non-unitary periodic Gaussian circuit
论文作者
论文摘要
我们考虑使用空间翻译对称性和时间周期性来交替交替进行单一大门和后选择的弱测量值的高斯量子电路。我们在分析上表明,这样的模型可以通过将时间演化和弱测量值映射到Möbius变换,可以托管通过纠缠熵检测到的不同类型的测量引起的相变。我们证明了对区域律过渡的日志法,以及向区域法转换的卷。对于后者,我们准确地计算了Hartley,Von Neumann和Rényi熵的关键指数$ν$。
We consider Gaussian quantum circuits that alternate unitary gates and post-selected weak measurements, with spatial translation symmetry and time periodicity. We show analytically that such models can host different kinds of measurement-induced phase transitions detected by entanglement entropy, by mapping the time evolution and weak measurements to Möbius transformations. We demonstrate the existence of a log-law to area-law transition, as well as a volume-law to area-law transition. For the latter, we compute the critical exponent $ν$ for the Hartley, von Neumann and Rényi entropies exactly.