论文标题

量化神经歧管中的外在曲率

Quantifying Extrinsic Curvature in Neural Manifolds

论文作者

Acosta, Francisco, Sanborn, Sophia, Duc, Khanh Dao, Madhav, Manu, Miolane, Nina

论文摘要

神经歧管假设假设神经群体的活性形成了低维歧管,其结构反映了编码的任务变量的结构。在这项工作中,我们结合了拓扑深生成模型和外在的Riemannian几何形状,以引入一种研究神经歧管结构的新方法。这种方法(i)计算了歧管的显式参数化,(ii)估计了它们的局部外部曲率 - 因此,在神经状态空间内量化了它们的形状。重要的是,我们证明我们的方法在不具有有意义的神经科学信息的转化方面是不变的,例如记录神经元的顺序的排列。我们从经验上表明,我们使用逼真的噪声水平正确估计了由圆,球和托里平滑变形产生的合成歧管的几何形状。我们还在模拟和真实的神经数据上验证了我们的方法,并表明我们恢复了在海马放置细胞中已知存在的几何结构。我们期望这种方法开放有关感知和行为的几何神经相关性的新探究途径。

The neural manifold hypothesis postulates that the activity of a neural population forms a low-dimensional manifold whose structure reflects that of the encoded task variables. In this work, we combine topological deep generative models and extrinsic Riemannian geometry to introduce a novel approach for studying the structure of neural manifolds. This approach (i) computes an explicit parameterization of the manifolds and (ii) estimates their local extrinsic curvature--hence quantifying their shape within the neural state space. Importantly, we prove that our methodology is invariant with respect to transformations that do not bear meaningful neuroscience information, such as permutation of the order in which neurons are recorded. We show empirically that we correctly estimate the geometry of synthetic manifolds generated from smooth deformations of circles, spheres, and tori, using realistic noise levels. We additionally validate our methodology on simulated and real neural data, and show that we recover geometric structure known to exist in hippocampal place cells. We expect this approach to open new avenues of inquiry into geometric neural correlates of perception and behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源