论文标题

保形高自旋重力的协变量

Covariant action for conformal higher spin gravity

论文作者

Basile, Thomas, Grigoriev, Maxim, Skvortsov, Evgeny

论文摘要

共形较高的自旋重力是Weyl重力的较高自旋延伸,是局部较高自旋理论的家族,由Segal和Tseytlin提出。我们为这些理论提出了明显的协变和坐标独立的作用。结果是基于较高的自旋对称性和变形量化之间的相互作用:在当地等效但明显的与背景无关的重新印象(称为母体系统),可以用相结合的较高自旋领域(Fradkin-Tseytlin领域)的脱壳多重,可以用联邦化的Bundledle cotandledledledledledledlede cotandled的联合性变形量化来解释。这使游戏中的量子痕迹引起了游戏,这是由Weyl代数的Feigin-felder-shoikhet Cocycle引起的,该痕量将Segal的动作扩展到量规不变性且全球定义明确的动作,可在父型系统的配置空间中起作用。可以在全球方法中理解相同的动作是圆圈上拓扑量子力学中的相关函数。

Conformal Higher Spin Gravity is a higher spin extension of Weyl gravity and is a family of local higher spin theories, which was put forward by Segal and Tseytlin. We propose a manifestly covariant and coordinate-independent action for these theories. The result is based on an interplay between higher spin symmetries and deformation quantization: a locally equivalent but manifestly background-independent reformulation, known as the parent system, of the off-shell multiplet of conformal higher spin fields (Fradkin-Tseytlin fields) can be interpreted in terms of Fedosov deformation quantization of the underlying cotangent bundle. This brings into the game the invariant quantum trace, induced by the Feigin-Felder-Shoikhet cocycle of Weyl algebra, which extends Segal's action into a gauge invariant and globally well-defined action functional on the space of configurations of the parent system. The same action can be understood within the worldline approach as a correlation function in the topological quantum mechanics on the circle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源