论文标题
依赖选择的几何条件
Geometric condition for Dependent Choice
论文作者
论文摘要
我们提供了一种几何条件,该条件是何时在fraenkel--Mostowski-specker置换模型中保持依赖选择的原理。这种情况是要求在可数交叉点下关闭组过滤器的滤波器的略有削弱。我们表明,这种条件在新的置换模型中非试验,我们称为“无处密集模型”,我们也研究了其扩展到无数的红衣主教。
We provide a geometric condition which characterises when the Principle of Dependent Choice holds in a Fraenkel--Mostowski--Specker permutation model. This condition is a slight weakening of requiring the filter of groups to be closed under countable intersections. We show that this condition holds nontrivially in a new permutation model we call "the nowhere dense model" and we study its extensions to uncountable cardinals as well.