论文标题

在任务转移学习中可转移性的信息理论方法

An Information-Theoretic Approach to Transferability in Task Transfer Learning

论文作者

Bao, Yajie, Li, Yang, Huang, Shao-Lun, Zhang, Lin, Zheng, Lizhong, Zamir, Amir, Guibas, Leonidas

论文摘要

任务转移学习是图像处理应用程序中的一种流行技术,它使用预训练的模型来降低相关任务的监督成本。一个重要的问题是确定任务转移性,即给定一个通用的输入域,估计从源任务中学到的表示的范围可以帮助学习目标任务。通常,可传递性是通过实验来测量的,要么是通过任务相关性来推断出的,通常在没有明确的操作含义的情况下定义。在本文中,我们提出了一种新颖的指标H-Score,这是一个易于计算的评估功能,该功能估算了使用统计和信息理论原理在分类问题中转移的表示形式的性能。实际图像数据上的实验表明,我们的指标不仅与经验可传递性测量相一致,而且对诸如源模型选择和任务转移课程学习等应用中的从业人员也有用。

Task transfer learning is a popular technique in image processing applications that uses pre-trained models to reduce the supervision cost of related tasks. An important question is to determine task transferability, i.e. given a common input domain, estimating to what extent representations learned from a source task can help in learning a target task. Typically, transferability is either measured experimentally or inferred through task relatedness, which is often defined without a clear operational meaning. In this paper, we present a novel metric, H-score, an easily-computable evaluation function that estimates the performance of transferred representations from one task to another in classification problems using statistical and information theoretic principles. Experiments on real image data show that our metric is not only consistent with the empirical transferability measurement, but also useful to practitioners in applications such as source model selection and task transfer curriculum learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源