论文标题

Voronoipatches:评估一种新的数据增强方法

VoronoiPatches: Evaluating A New Data Augmentation Method

论文作者

Illium, Steffen, Griffin, Gretchen, Kölle, Michael, Zorn, Maximilian, Nüßlein, Jonas, Linnhoff-Popien, Claudia

论文摘要

过度拟合是卷积神经网络(CNN)的问题,它导致模型对看不见的数据的概括不佳。为了解决这个问题,已经提出了许多新的和多样化的数据增强方法(DA)来补充或生成更多的培训数据,从而提高其质量。在这项工作中,我们提出了一种新的数据增强算法:Voronoipatches(VP)。我们主要利用图像中信息的非线性重组,碎片和遮挡小信息贴片。与其他DA方法不同,VP在随机布局中使用小型凸多边形贴片来在图像中传输信息。贴片和原始图像之间产生的突然过渡可以选择平滑。在我们的实验中,副总裁优于当前关于模型方差和过度拟合趋势的DA方法。我们利用图像中信息的非线性重新组合进行了数据增强,而非正交形状和结构可改善CNN模型在看不见的数据上的鲁棒性。

Overfitting is a problem in Convolutional Neural Networks (CNN) that causes poor generalization of models on unseen data. To remediate this problem, many new and diverse data augmentation methods (DA) have been proposed to supplement or generate more training data, and thereby increase its quality. In this work, we propose a new data augmentation algorithm: VoronoiPatches (VP). We primarily utilize non-linear recombination of information within an image, fragmenting and occluding small information patches. Unlike other DA methods, VP uses small convex polygon-shaped patches in a random layout to transport information around within an image. Sudden transitions created between patches and the original image can, optionally, be smoothed. In our experiments, VP outperformed current DA methods regarding model variance and overfitting tendencies. We demonstrate data augmentation utilizing non-linear re-combination of information within images, and non-orthogonal shapes and structures improves CNN model robustness on unseen data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源