论文标题
$λ$ 1的特征性粘合
Characteristic Gluing with $Λ$ 1. Linearised Einstein equations on four-dimensional spacetimes
论文作者
论文摘要
我们在静态真空中的一类特征表面上的邦迪仪表中的线性真空引力场建立了一个胶合定理,该静态真空四维背景具有宇宙学常数$λ\ in \ mathbb {r} $ in \ mathbb {r} $和null hypersursurface的紧凑型横截面的任意拓扑。在线性化的情况下,这是Aretakis,Czimek和Rodnianski的开创性分析,并在Minkowski SpaceTime中进行的灯杆进行了开创性分析。
We establish a gluing theorem for linearised vacuum gravitational fields in Bondi gauge on a class of characteristic surfaces in static vacuum four-dimensional backgrounds with cosmological constant $Λ\in \mathbb{R}$ and arbitrary topology of the compact cross-sections of the null hypersurface. This generalises and complements, in the linearised case, the pioneering analysis of Aretakis, Czimek and Rodnianski, carried-out on light-cones in Minkowski spacetime.