论文标题

周期性变量星的新时期确定方法

A New Period Determination Method for Periodic Variable Stars

论文作者

Xu, Xiao-Hui, Zhu, Qing-Feng, Li, Xu-Zhi, Li, Bin, Zheng, Hang, Qiu, Jin-Sheng, Zhao, Hai-Bin

论文摘要

可变恒星在理解银河系和宇宙中起着关键作用。天文大数据的时代提出了新的挑战,可以快速识别有趣且重要的变量恒星。准确估计周期是区分不同类型的可变星的最重要步骤。在这里,我们提出了一种确定可变性周期的新方法。通过组合光曲线的统计参数,变量的颜色,窗口函数和GLS算法,排除了上的变量,并且周期变量被排除在截度的二进制二进制文件和NEB变量(其他类型的eclips eclips declips declips eclips declips decrips decruia decruia binaries)中,则两种类型的变量,是两种类型的段落。我们基于从ASAS-SN和OGLE变量数据集的241,154个周期变量构建一个随机的森林分类器。随机森林分类器经过17个特征的训练,其中11个是从光曲线中提取的,而6个来自Gaia早期DR3,共有和2个质量目录。这些变量分为7个超类和17个子类。与ASAS-SN和OGLE目录相比,分类精度通常高于82%,而周期准确性为70%-99%。为了进一步测试新方法和分类器的可靠性,我们将结果与Chen等人的结果进行了比较。 (2020)对于ZTF DR2。分类精度通常高于70%。 EW和SR变量的周期准确性分别为50%和53%。其他类型的变量的周期准确性为65%-98%。

Variable stars play a key role in understanding the Milky Way and the universe. The era of astronomical big data presents new challenges for quick identification of interesting and important variable stars. Accurately estimating the periods is the most important step to distinguish different types of variable stars. Here, we propose a new method of determining the variability periods. By combining the statistical parameters of the light curves, the colors of the variables, the window function and the GLS algorithm, the aperiodic variables are excluded and the periodic variables are divided into eclipsing binaries and NEB variables (other types of periodic variable stars other than eclipsing binaries), the periods of the two main types of variables are derived. We construct a random forest classifier based on 241,154 periodic variables from the ASAS-SN and OGLE datasets of variables. The random forest classifier is trained on 17 features, among which 11 are extracted from the light curves and 6 are from the Gaia Early DR3, ALLWISE and 2MASS catalogs. The variables are classified into 7 superclasses and 17 subclasses. In comparison with the ASAS-SN and OGLE catalogs, the classification accuracy is generally above approximately 82% and the period accuracy is 70%-99%. To further test the reliability of the new method and classifier, we compare our results with the results of Chen et al. (2020) for ZTF DR2. The classification accuracy is generally above 70%. The period accuracy of the EW and SR variables is 50% and 53%, respectively. And the period accuracy of other types of variables is 65%-98%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源