论文标题
Dionysus:低资源对话摘要的预培训模型
DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization
论文作者
论文摘要
由于其广泛的应用范围,对话摘要最近引起了极大的关注。但是,现有的总结对话的方法存在局限性,因为它们没有考虑到对话的固有结构,并且严重依赖于标记的数据,这可能导致新领域的性能差。在这项工作中,我们提出了Dionysus(对话摘要预训练中的动态输入优化),这是一种预先训练的编码模型,用于汇总任何新域中的对话。为了预先培训狄俄尼索斯,我们为每个对话创建了两个伪摘要示例:一个是由微调的摘要模型制作的,另一个是一个传达重要信息的对话转弯的集合。然后,我们根据不同类型对话的信息分布的差异选择这些伪摘要之一。此选定的伪摘要是在大型对话语料库中使用自我监督的方法进行预训练狄俄尼索斯的目标。我们的实验表明,Dionysus在六个数据集上的现有方法优于现有方法,如其在零射击和少量设置中的Rouge分数所证明的那样。
Dialogue summarization has recently garnered significant attention due to its wide range of applications. However, existing methods for summarizing dialogues have limitations because they do not take into account the inherent structure of dialogue and rely heavily on labeled data, which can lead to poor performance in new domains. In this work, we propose DIONYSUS (dynamic input optimization in pre-training for dialogue summarization), a pre-trained encoder-decoder model for summarizing dialogues in any new domain. To pre-train DIONYSUS, we create two pseudo summaries for each dialogue example: one is produced by a fine-tuned summarization model, and the other is a collection of dialogue turns that convey important information. We then choose one of these pseudo summaries based on the difference in information distribution across different types of dialogues. This selected pseudo summary serves as the objective for pre-training DIONYSUS using a self-supervised approach on a large dialogue corpus. Our experiments show that DIONYSUS outperforms existing methods on six datasets, as demonstrated by its ROUGE scores in zero-shot and few-shot settings.