论文标题

Dialog2API:带有API描述和示例程序的面向任务的对话

Dialog2API: Task-Oriented Dialogue with API Description and Example Programs

论文作者

Shu, Raphael, Mansimov, Elman, Alkhouli, Tamer, Pappas, Nikolaos, Romeo, Salvatore, Gupta, Arshit, Mansour, Saab, Zhang, Yi, Roth, Dan

论文摘要

功能和对话经验是面向任务对话系统的两个重要因素。封闭模式(例如,对话语义解析)的常规方法通常会失败,因为功能和对话经验都受到基础模式的强烈限制。我们介绍了一个针对任务对话的新范式-DIALOG2API-,以大大扩展功能并提供无缝的对话体验。对话模型通过生成和执行程序触发一组预定义的API来与环境进行交互。该模型还管理对话策略,并通过产生适当的自然语言响应与用户互动。通过允许生成自由形式的程序,Dialog2API通过组合不同的API来支持综合目标,而无限制的程序修订则提供了自然而强大的对话体验。为了促进Dialog2API,为核心模型提供了API文档,执行环境以及带有程序注释的一些示例对话。我们提出了一种针对Dialog2API量身定制的方法,在该方法中,对话状态由一堆程序表示,最近提到的程序位于堆栈的顶部。 Dialog2API可以使用许多应用程序方案,例如软件自动化和客户服务。在本文中,我们构建了一个用于AWS S3 API的数据集,并目前的评估基准的评估结果。

Functionality and dialogue experience are two important factors of task-oriented dialogue systems. Conventional approaches with closed schema (e.g., conversational semantic parsing) often fail as both the functionality and dialogue experience are strongly constrained by the underlying schema. We introduce a new paradigm for task-oriented dialogue - Dialog2API - to greatly expand the functionality and provide seamless dialogue experience. The conversational model interacts with the environment by generating and executing programs triggering a set of pre-defined APIs. The model also manages the dialogue policy and interact with the user through generating appropriate natural language responses. By allowing generating free-form programs, Dialog2API supports composite goals by combining different APIs, whereas unrestricted program revision provides natural and robust dialogue experience. To facilitate Dialog2API, the core model is provided with API documents, an execution environment and optionally some example dialogues annotated with programs. We propose an approach tailored for the Dialog2API, where the dialogue states are represented by a stack of programs, with most recently mentioned program on the top of the stack. Dialog2API can work with many application scenarios such as software automation and customer service. In this paper, we construct a dataset for AWS S3 APIs and present evaluation results of in-context learning baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源