论文标题

将Grundy的统治扩展到$ K $ -Grundy的统治

Extending Grundy domination to $k$-Grundy domination

论文作者

Herrman, Rebekah, Smith, Stephen G. Z.

论文摘要

图$ g =(v,e)$的Grundy支配数是唯一最长的唯一顶点的长度$ s =(v_1,\ ldots,v_k)$满足$ n [v_i] \ setMinus \ setMinus \ cup_ \ cup_ {最近,引入了该概念的概括,称为$ k $ -grundy统治。在$ k $ -grundy的统治中,如果$ s $具有邻居$ u $,则可以将顶点$ v $包含在$ s $中,以便$ u $出现在不到$ s $ s $的$ k $顶点的关闭社区中。在本文中,我们确定了某些图形家庭的$ K $ -Grundy统治号码,找到$ K $ -L $ -L $ -GRUNDY统治号码的基于学位的界限,并定义了$ K $ -Z $ -Z $ -Z $ -GRUNDY统治号码与$ K $的关系之间的关系。

The Grundy domination number of a graph $G = (V,E)$ is the length of the longest sequence of unique vertices $S = (v_1, \ldots, v_k)$ satisfying $N[v_i] \setminus \cup_{j=1}^{i-1}N[v_j] \neq \emptyset$ for each $i \in [k]$. Recently, a generalization of this concept called $k$-Grundy domination was introduced. In $k$-Grundy domination, a vertex $v$ can be included in $S$ if it has a neighbor $u$ such that $u$ appears in the closed neighborhood of fewer than $k$ vertices of $S$. In this paper, we determine the $k$-Grundy domination number for some families of graphs, find degree-based bounds for the $k$-$L$-Grundy domination number, and define a relationship between the $k$-$Z$-Grundy domination number and the $k$-forcing number of a graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源