论文标题
使用麦克斯韦关系测量拓扑纠缠熵
Measuring topological entanglement entropy using Maxwell relations
论文作者
论文摘要
拓扑纠缠熵(TEE)是拓扑顺序的关键诊断,可以检测到阿贝利亚人或非阿贝尔人的存在。但是,目前尚无协议来测量冷凝物质系统中的T恤。在这里,我们提出了一种基于与热力学熵变化在量子点接触(QPC)中发生的非平凡的连接,以测量TEE的方案,因为它将拓扑液体从拓扑液中捏成两个。我们展示了如何使用麦克斯韦关系从附近量子点的电荷检测中提取这种熵变化。我们使用描述QPC中普遍跨界的正弦 - 戈登模型的精确解决方案,明确地为Abelian Laughlin表明了这一点。我们的方法可能会开设具有非亚伯统计的拓扑状态的新的热力学检测方案。
Topological entanglement entropy (TEE) is a key diagnostic of topological order, allowing to detect the presence of Abelian or non-Abelian anyons. However, there are currently no protocols to measure TEE in condensed matter systems. Here, we propose a scheme to measure the TEE, based on a nontrivial connection with the thermodynamic entropy change occurring in a quantum point contact (QPC) as it pinches off the topological liquid into two. We show how this entropy change can be extracted using Maxwell relations from charge detection of a nearby quantum dot. We demonstrate this explicitly for the Abelian Laughlin states, using an exact solution of the sine-Gordon model describing the universal crossover in the QPC. Our approach might open a new thermodynamic detection scheme of topological states also with non-Abelian statistics.