论文标题

二维材料中无法动的淋巴结点和线附近的电子结构

Electronic structures near unmovable nodal points and lines in two-dimensional materials

论文作者

Damljanovic, V., Lazic, N.

论文摘要

不可移动的淋巴结点(UNP)和线路(UNL)是频带交叉点,在布里渊区中的位置并未通过对称保留扰动而改变。不仅位置,而且附近的频带结构都由波矢量的小组决定,并且是不可约(CO)表示。在本文中,我们提供了所有UNP附近的全套电子分散,并在具有和不带有自旋轨道耦合(SOC)的非磁性,准二维(2D)材料中使用。对所有层灰色单组和双重组的分析都给出了19种不同的准粒子,其中绝大多数对于属于某些层组的2D材料是不可避免的。其中包括Weyl和Dirac节点线,具有二次或立方体分裂的分散,各向异性Weyl和Dirac锥,这些方向可以通过例如菌株等。我们指出了对SOC鲁棒的Qusiparticles。为了方便起见,我们的结果以图形方式简洁地呈现 - 作为地图,而不是以表格的百科全书形式。它们可以用作检查点,也可以用于实验(通过ARPES)和数值获得的电子带结构以及更深入的理论研究。

Unmovable nodal points (UNP) and lines (UNL) are band crossings which positions in the Brillouin zone are unaltered by symmetry preserving perturbations. Not only positions but also the band structure in the vicinity is determined by the little group of a wave vector and it's irreducible (co)representations. In this paper we give the full set of electronic dispersions near all UNPs and UNLs in non-magnetic, quasi two-dimensional (2D) materials both with and without spin-orbit coupling (SOC). Analysis of all layer gray single and double groups gives nineteen different quasiparticles, great majority of which are unavoidable for a 2D material which belongs to certain layer groups. These include Weyl and Dirac nodal lines, dispersions with quadratic or cubic splitting, anisotropic Weyl and Dirac cones which orientation can be varied by e.g. strain etc. We indicated qusiparticles that are robust to SOC. For convenience, our results are concisely presented graphically - as a map, not in a tabular, encyclopedia form. They may be of use as checkpoints or for fitting of experimentally (via e.g. ARPES) and numerically obtained electronic band structures as well as for deeper theoretical investigations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源