论文标题

关于对称分解纠缠的边界保形野外理论方法

On the Boundary Conformal Field Theory Approach to Symmetry-Resolved Entanglement

论文作者

Di Giulio, Giuseppe, Meyer, René, Northe, Christian, Scheppach, Henri, Zhao, Suting

论文摘要

我们通过将两部分与环形边界条件与环形的几何形状相关联,研究了间隔中纠缠熵(CFTS)的纠缠熵的对称分辨率。在存在诸如KAC-MOODY型电流代数之类的扩展对称性的情况下,仅当环形上的边界条件保留对称组的一部分时,即使对称性分辨率才有可能,即,如果与空间双重两性相关的分数图与所在的对称性兼容。然后,边界CFT(BCFT)的分区函数通过边界条件保留的对称组的不可减至表示的特征进行分解。我们证明,这种分解已经提供了相应两部分的纠缠光谱的对称分辨率。考虑到与相同表示形式或电荷部门相关的分区函数的各种术语,可以将对称分辨的Rényi熵推导到UV截止扩展中的所有订单,而无需计算带电的时刻。我们将此想法应用于免费的无质量玻色子理论,其中$ u(1)$,$ \ mathbb {r} $和$ \ mathbb {z} _2 $ symmetry。

We study the symmetry resolution of the entanglement entropy of an interval in two-dimensional conformal field theories (CFTs), by relating the bipartition to the geometry of an annulus with conformal boundary conditions. In the presence of extended symmetries such as Kac-Moody type current algebrae, symmetry resolution is possible only if the boundary conditions on the annulus preserve part of the symmetry group, i.e. if the factorization map associated with the spatial bipartition is compatible with the symmetry in question. The partition function of the boundary CFT (BCFT) is then decomposed in terms of the characters of the irreducible representations of the symmetry group preserved by the boundary conditions. We demonstrate that this decomposition already provides the symmetry resolution of the entanglement spectrum of the corresponding bipartition. Considering the various terms of the partition function associated with the same representation, or charge sector, the symmetry-resolved Rényi entropies can be derived to all orders in the UV cutoff expansion without the need to compute the charged moments. We apply this idea to the theory of a free massless boson with $U(1)$, $\mathbb{R}$ and $\mathbb{Z}_2$ symmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源