论文标题

集成量子光相传感器

Integrated Quantum Optical Phase Sensor

论文作者

Stokowski, Hubert S., McKenna, Timothy P., Park, Taewon, Hwang, Alexander Y., Dean, Devin J., Celik, Oguz Tolga, Ansari, Vahid, Fejer, Martin M., Safavi-Naeini, Amir H.

论文摘要

光的量子噪声从根本上限制了光相传感器。半古典图片将这种噪声归因于从激光等连贯的光源(例如激光器)的随机到达时间。挤压状态的工程源抑制了这种噪声,并允许超过标准量子极限(SQL)的灵敏度进行相位检测。 Ligo等高级重力检测器已经结合了此类来源,并且在实现量子生物学测量方面的新生努力使量子测量中出现的新能力都可以瞥见。我们需要在可部署的量子传感器中设计和使用量子光的方法,这些量子传感器在实验室环境的范围内运行。在这里,我们提出了一个用薄膜锂锂锂制造的光子整合电路,该电路提供了满足这些要求的路径。我们使用二阶非线性以与泵光相同的频率产生挤压状态,并通过电磁体实现电路控制和传感。使用26.2毫米的光功率,我们测量(2.7 $ \ pm $ 0.2)$ \%$挤压并将其应用以增加相位测量的信噪比。我们预计,像这样的片上光子系统(以低功率运行,并在单个模具上整合所有所需的功能,将为量子光学传感打开新的机会。

The quantum noise of light fundamentally limits optical phase sensors. A semiclassical picture attributes this noise to the random arrival time of photons from a coherent light source such as a laser. An engineered source of squeezed states suppresses this noise and allows sensitivity beyond the standard quantum limit (SQL) for phase detection. Advanced gravitational wave detectors like LIGO have already incorporated such sources, and nascent efforts in realizing quantum biological measurements have provided glimpses into new capabilities emerging in quantum measurement. We need ways to engineer and use quantum light within deployable quantum sensors that operate outside the confines of a lab environment. Here we present a photonic integrated circuit fabricated in thin-film lithium niobate that provides a path to meet these requirements. We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics. Using a 26.2 milliwatts of optical power, we measure (2.7 $\pm$ 0.2 )$\%$ squeezing and apply it to increase the signal-to-noise ratio of phase measurement. We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源