论文标题
定量理解全球臭氧耗竭的通用机制
Universal Mechanism for Quantitative Understanding of Global Ozone Depletion
论文作者
论文摘要
本文制定了宇宙射线(CR)驱动的电子诱导的反应(CRE)机制,以对全球臭氧耗竭进行定量理解。基于提出的静电键合机制,用于充电诱导的分子在表面上以及测得的臭氧耗尽物质(ODS)吸附的冰的离解电子转移(DET)横截面,以使分析方程得出,从而使大气中的氯ume sums i A i i i i i i i i i^i^i [cl] $φ_e$是CR生产的预水力($ e_ {pre}^ - $)在大气粒子表面上的通量,$θ_{ods}^i $是ODS的表面覆盖率,$ k^i $是ODS的有效det cross cross-efter cross-pree},$ n preatime $ nife ustime ustime ustime ustime ustime ustime-fiftime-fifem and fifimem-fiftime-fiftime-friftime-fiftime-frifem andime fifimem-frifeime andimme-frifem andimem- Cl $^ - $和粒子表面积密度。随着OD的浓度为唯一变量,我们计算出的计算时间序列的臭氧耗竭率在1960年代,1980年代和2000年代在全球区域中的计算结果通常与观察结果一致,尤其是与基于地面的ozonesonde数据和卫星在南极的基于地面的ozonesonde数据和卫星数据中与狭窄的高度高级km的Tropics数据中的卫星数据相同。还发现了与北极和中纬度卫星数据的良好协议。定量地给出了对臭氧损失的反硝化作用的新见解。但是,该方程式高估了北部中部和北极的对流层臭氧的损失,这可能是由于污染区域中卤素化学的产生增加所致。最后,来自Ozoneonde数据的臭氧地图清楚地揭示了热带臭氧孔的范围。结果使得应用CRE方程以实现对全球臭氧耗竭的定量理解的信心。
This paper formulates the cosmic-ray(CR)-driven electron-induced reaction (CRE) mechanism to provide a quantitative understanding of global ozone depletion. Based on a proposed electrostatic bonding mechanism for charged-induced adsorption of molecules on surfaces and on the measured dissociative electron transfer (DET) cross sections of ozone depletion substances (ODSs) adsorbed on ice, an analytical equation is derived to give atmospheric chlorine atom concentration: $$[Cl] = \sum_i k^i θ_{ODS}^i Φ_e^2,$$ where $Φ_e$ is the CR-produced prehydrated electron ($e_{pre}^-$) flux on atmospheric particle surfaces, $θ_{ODS}^i$ is the surface coverage of an ODS, and $k^i$ is the ODS's effective DET coefficient comprising the DET cross section, lifetimes of surface-trapped $e_{pre}^-$ and Cl$^-$, and particle surface area density. With concentrations of ODSs as the sole variable, our calculated results of time-series ozone depletion rates in global regions in the 1960s, 1980s and 2000s show generally good agreement with observations, particularly with ground-based ozonesonde data and satellite-measured data over Antarctica and with satellite data in the tropics in a narrow altitude band at 13-20 km. Good agreements with satellite data in the Arctic and midlatitudes are also found. A new insight into the denitrification effect on ozone loss is given quantitatively. But this equation overestimates tropospheric ozone loss at northern midlatitudes and the Arctic, likely due to increased ozone production by the halogen chemistry in polluted regions. Finally, ozone maps from ozonesonde data clearly reveal the scope of the tropical ozone hole. The results render confidence in applying the CRE equation to achieve a quantitative understanding of global ozone depletion.