论文标题

关于Viping的猜想的注释

A note on Vizing's conjecture

论文作者

Špacapan, Simon

论文摘要

令$γ(g)$表示图形$ g $的统治数。让$ g $和$ h $是图形和$ g \ box h $它们的笛卡尔产品。对于$ h \ in v(h)$定义$ g_h = \ {(g,h)\,| \,g \ in v(g)\} $ in v(g)\} $,并将此设置称为$ g \ box h $的$ g $ -layer。我们证明了Viping的猜想的以下特殊情况。令$ d $为$ g \ box h $的主导套装。如果最低限度的统治集$ d_1 $和$ d_2 $ $ g $,以便对于v(h)$中的每一个$ h \,$ d \ cap g_h $ to $ g $的投影包含在$ d_1 $或$ d_2 $中,则包含$ d_1 $或$ d_2 $,然后$ | d | d | d | d | \ geq feqqγ(g)γ$。

Let $γ(G)$ denote the domination number of graph $G$. Let $G$ and $H$ be graphs and $G\Box H$ their Cartesian product. For $h\in V(H)$ define $G_h=\{(g,h)\,|\,g\in V(G)\}$ and call this set a $G$-layer of $G\Box H$. We prove the following special case of Vizing's conjecture. Let $D$ be a dominating set of $G\Box H$. If there exist minimum dominating sets $D_1$ and $D_2$ of $G$ such that for every $h\in V(H)$, the projection of $D\cap G_h$ to $G$ is contained in $D_1$ or $D_2$, then $|D|\geq γ(G)γ(H)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源