论文标题

具有大视力模型的通用对象检测

Universal Object Detection with Large Vision Model

论文作者

Lin, Feng, Hu, Wenze, Wang, Yaowei, Tian, Yonghong, Lu, Guangming, Chen, Fanglin, Xu, Yong, Wang, Xiaoyu

论文摘要

在过去的几年中,人们对开发广泛,通用和通用的计算机视觉系统的兴趣越来越大。这样的系统有可能同时解决广泛的视力任务,而不仅仅限于特定问题或数据域。这种通用性对于实际的现实世界计算机视觉应用至关重要。在这项研究中,我们的重点是一个特定的挑战:大规模的多域通用对象检测问题,这有助于实现通用视觉系统的更广泛的目标。这个问题提出了一些复杂的挑战,包括跨数据库类别标签重复,标签冲突以及处理层次分类法的必要性。为了应对这些挑战,我们介绍了使用预先训练的大型视力模型的标签处理,层次结构感知损失设计以及资源有效的模型培训的方法。我们的方法表现出了出色的性能,在2022年强大的视觉挑战挑战赛(RVC 2022)的对象检测轨道上获得了著名的第二名排名(RVC 2022)。我们认为,我们的全面研究将成为有价值的参考,并提供一种解决计算机视觉社区中类似挑战的替代方法。我们工作的源代码可在https://github.com/linfeng93/large-unidet上公开获得。

Over the past few years, there has been growing interest in developing a broad, universal, and general-purpose computer vision system. Such systems have the potential to address a wide range of vision tasks simultaneously, without being limited to specific problems or data domains. This universality is crucial for practical, real-world computer vision applications. In this study, our focus is on a specific challenge: the large-scale, multi-domain universal object detection problem, which contributes to the broader goal of achieving a universal vision system. This problem presents several intricate challenges, including cross-dataset category label duplication, label conflicts, and the necessity to handle hierarchical taxonomies. To address these challenges, we introduce our approach to label handling, hierarchy-aware loss design, and resource-efficient model training utilizing a pre-trained large vision model. Our method has demonstrated remarkable performance, securing a prestigious second-place ranking in the object detection track of the Robust Vision Challenge 2022 (RVC 2022) on a million-scale cross-dataset object detection benchmark. We believe that our comprehensive study will serve as a valuable reference and offer an alternative approach for addressing similar challenges within the computer vision community. The source code for our work is openly available at https://github.com/linfeng93/Large-UniDet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源