论文标题

通过高档能量传输直接驾驶模拟的行星飞机

Direct driving of simulated planetary jets by upscale energy transfer

论文作者

Böning, Vincent G. A., Wulff, Paula, Dietrich, Wieland, Wicht, Johannes, Christensen, Ulrich R.

论文摘要

在巨型行星上形成喷气机和大规模涡旋的精确机制尚不清楚。已经提出了反向级联反应。或者,可以通过小规模对流直接注入能量。我们的目的是阐明在快速旋转,深层,地球的球形壳对流的系统中,级联反向进给纬向喷射和大规模涡流。我们分析了这些模拟中动能的非线性比例到尺度转移,这是方位波数的函数m。我们发现,喷气机的主要驾驶与从小对流尺度直接转移到喷气机有关。这种转移在光谱空间中非常非本地,绕过大规模结构。因此,射流形成不是由反级联反向驱动的。取而代之的是,这是由于雷诺(Reynolds)的直接驾驶压力是从小型对流流中进行的。初始相关性是由均匀背景旋转和壳几何形状对流量的影响引起的。尽管射流生长抑制了对流,但它增加了对流流的相关性,这进一步扩大了射流生长,直到它通过粘性耗散平衡。在较小的程度上,能量直接从对流尺度(主要是在切线圆柱体之外)传递到大规模涡流。在那里,大规模涡流也不是由反级联反向驱动的。在切线圆柱体内部,转移到大规模涡旋的较弱,但在光谱空间中更本地化,使级联反向级联的可能性成为大规模涡流的驱动器。此外,大型涡流通过正向传递从喷气机中接收动能。因此,我们将喷气不稳定性作为大刻度涡流的替代形成机理。最后,我们发现喷气动能缩放为$ \ ell^{ - 5} $,与Zonostolophic Segime相同。

The precise mechanism that forms jets and large-scale vortices on the giant planets is unknown. An inverse cascade has been suggested. Alternatively, energy may be directly injected by small-scale convection. Our aim is to clarify whether an inverse cascade feeds zonal jets and large-scale eddies in a system of rapidly rotating, deep, geostrophic spherical-shell convection. We analyze the nonlinear scale-to-scale transfer of kinetic energy in such simulations as a function of the azimuthal wave number, m. We find that the main driving of the jets is associated with upscale transfer directly from the small convective scales to the jets. This transfer is very nonlocal in spectral space, bypassing large-scale structures. The jet formation is thus not driven by an inverse cascade. Instead, it is due to a direct driving by Reynolds stresses from small-scale convective flows. Initial correlations are caused by the effect of uniform background rotation and shell geometry on the flows. While the jet growth suppresses convection, it increases the correlation of the convective flows, which further amplifies the jet growth until it is balanced by viscous dissipation. To a much smaller extent, energy is transferred upscale to large-scale vortices directly from the convective scales, mostly outside the tangent cylinder. There, large-scale vortices are not driven by an inverse cascade either. Inside the tangent cylinder, the transfer to large-scale vortices is weaker, but more local in spectral space, leaving open the possibility of an inverse cascade as a driver of large-scale vortices. In addition, large-scale vortices receive kinetic energy from the jets via forward transfer. We therefore suggest a jet instability as an alternative formation mechanism of largescale vortices. Finally, we find that the jet kinetic energy scales as $\ell^{-5}$, the same as for the zonostrophic regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源