论文标题

比较两种共同体障碍物的背景性,并与浅回路进行广义构造量子优势

Comparing two cohomological obstructions for contextuality, and a generalised construction of quantum advantage with shallow circuits

论文作者

Aasnæss, Sivert

论文摘要

我们提供了两个关于量子上下文性和共同体学主题的结果,以及浅回路的非本地性和量子优势。 Abramsky等。结果表明,基于čech共同体学的共生式检测到了一系列量子上下文性的例子。但是,该方法没有给出情境性的完整协同学表征。 Oke等人提出了一种不同的同步方法。他们的方法利用了保利操作员的代数结构及其Qudit概括,称为Weyl Operators。我们对这种结构进行了抽象的描述,然后将它们的方法概括为使用此结构的任何示例。我们在这个一般层面上证明,该方法与上下文的表征相比,这种方法比čech共同学方法更完整。 Bravyi,Gosset和König(BGK)给出了第一个无条件的证据,即受限的量子电路类别比其经典类似物更强大。结果,对于有界深度和扇形(浅电路)的电路类别,它利用了特定的情境示例。 BGK的量子电路和计算问题来自与众所周知的GHz非本地游戏有关的非本地游戏家族。我们提出了他们的构造的广义版本。以浅回路为情境性并产生无条件的量子优势的系统方式。

We present two results on the subject of quantum contextuality and cohomology, and non-locality and quantum advantage with shallow circuits. Abramsky et al. showed that a range of examples of quantum contextuality is detected by a cohomological invariant based on Čech cohomology. However, the approach does not give a complete cohomological characterisation of contextuality. A different cohomological approach to contextuality was introduced by Okay et al. Their approach exploits the algebraic structure of the Pauli operators and their qudit generalisations known as Weyl operators. We give an abstract account of this structure, then generalise their approach to any example of contextuality with this structure. We prove at this general level that the approach does not give a more complete characterisation of contextuality than the Čech cohomology approach. Bravyi, Gosset, and König (BGK) gave the first unconditional proof that a restricted class of quantum circuits is more powerful than its classical analogue. The result, for the class of circuits of bounded depth and fan-in (shallow circuits), exploits a particular family of examples of contextuality. BGK's quantum circuit and computational problem are derived from a family of non-local games related to the well-known GHZ non-local game. We present a generalised version of their construction. A systematic way of taking examples of contextuality and producing unconditional quantum advantage results with shallow circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源