论文标题

在各向同性,上下文化和基于对比度句子表示的学习动力学上学习

On Isotropy, Contextualization and Learning Dynamics of Contrastive-based Sentence Representation Learning

论文作者

Xiao, Chenghao, Long, Yang, Moubayed, Noura Al

论文摘要

在句子表示学习(SRL)中纳入对比的学习目标已对许多句子级的NLP任务产生了重大改进。但是,尚不清楚为什么对比度学习在学习句子级语义方面起作用。在本文中,我们旨在通过仔细研究各向同性,情境化和学习动态的镜头来帮助指导句子表示方法的未来设计。我们通过表示形式的几何形状来解释其成功,并表明对比度学习会带来各向同性,并驱动高句子内相似性:在同一句子中,令牌在语义空间中会收敛到相似的位置。我们还发现,我们形式化为“虚假的上下文化”的东西可以缓解语义上有意义的令牌,同时为功能性的代币增强。我们发现,嵌入空间是在训练过程中针对来源的,现在有更多的区域可以更好地定义。我们通过观察以不同的训练温度,批量大小和集合方法观察学习动态来消融这些发现。

Incorporating contrastive learning objectives in sentence representation learning (SRL) has yielded significant improvements on many sentence-level NLP tasks. However, it is not well understood why contrastive learning works for learning sentence-level semantics. In this paper, we aim to help guide future designs of sentence representation learning methods by taking a closer look at contrastive SRL through the lens of isotropy, contextualization and learning dynamics. We interpret its successes through the geometry of the representation shifts and show that contrastive learning brings isotropy, and drives high intra-sentence similarity: when in the same sentence, tokens converge to similar positions in the semantic space. We also find that what we formalize as "spurious contextualization" is mitigated for semantically meaningful tokens, while augmented for functional ones. We find that the embedding space is directed towards the origin during training, with more areas now better defined. We ablate these findings by observing the learning dynamics with different training temperatures, batch sizes and pooling methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源