论文标题
Sucre:利用水下颜色修复的场景结构
SUCRe: Leveraging Scene Structure for Underwater Color Restoration
论文作者
论文摘要
在达到光学传感器之前,光线通过的介质的物理特征会改变水下图像。散射和波长依赖性吸收可显着修饰捕获的颜色,这取决于观察到的元素与图像平面的距离。在本文中,我们旨在恢复场景的图像,好像水对光的传播没有影响一样。我们介绍了Sucre,这是一种新颖的方法,可利用场景的3D结构进行水下颜色恢复。通过在多个图像中遵循点并跟踪其强度在与传感器的不同距离时,我们可以约束在水下图像形成模型中的优化参数,并检索未衰减的像素强度。我们在各种场景中对我们的方法进行了广泛的定量和定性分析,从自然光到深海环境,使用从现实世界情景和一个合成数据集中获得的三个水下数据集进行。我们还将所提出方法的性能与广泛现有的最新方法的性能进行了比较。结果表明,在一系列客观指标中利用多个视图的效果一致。我们的代码可在https://github.com/clementinboittiaux/sucre上公开获取。
Underwater images are altered by the physical characteristics of the medium through which light rays pass before reaching the optical sensor. Scattering and wavelength-dependent absorption significantly modify the captured colors depending on the distance of observed elements to the image plane. In this paper, we aim to recover an image of the scene as if the water had no effect on light propagation. We introduce SUCRe, a novel method that exploits the scene's 3D structure for underwater color restoration. By following points in multiple images and tracking their intensities at different distances to the sensor, we constrain the optimization of the parameters in an underwater image formation model and retrieve unattenuated pixel intensities. We conduct extensive quantitative and qualitative analyses of our approach in a variety of scenarios ranging from natural light to deep-sea environments using three underwater datasets acquired from real-world scenarios and one synthetic dataset. We also compare the performance of the proposed approach with that of a wide range of existing state-of-the-art methods. The results demonstrate a consistent benefit of exploiting multiple views across a spectrum of objective metrics. Our code is publicly available at https://github.com/clementinboittiaux/sucre.