论文标题
稳定导体有限的异性扩展
Finite Birational extension with stable conductor
论文作者
论文摘要
让$ s $是一个模块有限的birational延长,其1 $二维本地cohen--macaulay ring $ r $。 $ r $ $ r $的导体何时是稳定的理想?如果$ r $也是戈伦斯坦(Gorenstein)的一般性,那么我们表明,$ r $中的$ s $的导体是稳定的理想,而$ s $是反射性$ r $ -module时,仅当且仅当$ ch \ permatatorname {cm}(cm}(cm}(cm}(s)= \ operatotorname = \ perperatorname {cm}(cm}(cm}(s){cm}(s)\ cap $ $ cap $ pereraTAMe} cm {cm {cm)
Let $S$ be a module finite birational extension of a $1$-dimensional local Cohen--Macaulay ring $R$. When is the conductor of $S$ in $R$ a stable ideal? If $R$ is also generically Gorenstein, then we show that the conductor of $S$ in $R$ is a stable ideal, and $S$ is a reflexive $R$-module if and only if $Ω\operatorname{CM}(S)=\operatorname{CM}(S)\cap Ω\operatorname{CM}(R)$.