论文标题
非平滑歧管分解
Nonsmooth manifold decompositions
论文作者
论文摘要
我们通过连续选择平滑函数来研究平滑歧管上诱导的结构。如果这种选择是合适的通用,它提供了歧管的分层,其地层是代数定义的平滑亚序列。当连续选择具有非排定关键点时,分层会降低到局部拓扑结构。我们在4个manifold上分析了最大三个平滑函数的结构,该功能为三触角理论提供了新的观点。
We study the structure induced on a smooth manifold by a continuous selection of smooth functions. In case such selection is suitably generic, it provides a stratification of the manifold, whose strata are algebraically defined smooth submanifolds. When the continuous selection has nondegenerate critical points, stratification descends to the local topological structure. We analyze this structure for the maximum of three smooth functions on a 4-manifold, which provides a new perspective on the theory of trisections.