论文标题
SurfaceVoronoi:有效地计算出具有任意距离求解器的网格表面上的Voronoi图
SurfaceVoronoi: Efficiently Computing Voronoi Diagrams over Mesh Surfaces with Arbitrary Distance Solvers
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper, we propose to compute Voronoi diagrams over mesh surfaces driven by an arbitrary geodesic distance solver, assuming that the input is a triangle mesh as well as a collection of sites $P=\{p_i\}_{i=1}^m$ on the surface. We propose two key techniques to solve this problem. First, as the partition is determined by minimizing the $m$ distance fields, each of which rooted at a source site, we suggest keeping one or more distance triples, for each triangle, that may help determine the Voronoi bisectors when one uses a mark-and-sweep geodesic algorithm to predict the multi-source distance field. Second, rather than keep the distance itself at a mesh vertex, we use the squared distance to characterize the linear change of distance field restricted in a triangle, which is proved to induce an exact VD when the base surface reduces to a planar triangle mesh. Specially, our algorithm also supports the Euclidean distance, which can handle thin-sheet models (e.g. leaf) and runs faster than the traditional restricted Voronoi diagram~(RVD) algorithm. It is very extensible to deal with various variants of surface-based Voronoi diagrams including (1)surface-based power diagram, (2)constrained Voronoi diagram with curve-type breaklines, and (3)curve-type generators. We conduct extensive experimental results to validate the ability to approximate the exact VD in different distance-driven scenarios.