论文标题

智能面罩:基于传感器的可穿戴面罩利用计算机视觉算法

Smart Face Shield: A Sensor-Based Wearable Face Shield Utilizing Computer Vision Algorithms

论文作者

Santos, Manuel Luis C. Delos, Tinio, Ronaldo S., Diaz, Darwin B., Tolosa, Karlene Emily I.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The study aims the development of a wearable device to combat the onslaught of covid-19. Likewise, to enhance the regular face shield available in the market. Furthermore, to raise awareness of the health and safety protocols initiated by the government and its affiliates in the enforcement of social distancing with the integration of computer vision algorithms. The wearable device was composed of various hardware and software components such as a transparent polycarbonate face shield, microprocessor, sensors, camera, thin-film transistor on-screen display, jumper wires, power bank, and python programming language. The algorithm incorporated in the study was object detection under computer vision machine learning. The front camera with OpenCV technology determines the distance of a person in front of the user. Utilizing TensorFlow, the target object identifies and detects the image or live feed to get its bounding boxes. The focal length lens requires the determination of the distance from the camera to the target object. To get the focal length, multiply the pixel width by the known distance and divide it by the known width (Rosebrock, 2020). The deployment of unit testing ensures that the parameters are valid in terms of design and specifications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源