论文标题
部分可观测时空混沌系统的无模型预测
Assessing bivariate independence: Revisiting Bergsma's covariance
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Bergsma (2006) proposed a covariance $κ$(X,Y) between random variables X and Y. He derived their asymptotic distributions under the null hypothesis of independence between X and Y. The non-null (dependent) case does not seem to have been studied in the literature. We derive several alternate expressions for $κ$. One of them leads us to a very intuitive estimator of $κ$(X,Y) that is a nice function of four naturally arising U-statistics. We derive the exact finite sample relation between all three estimates. The asymptotic distribution of our estimator, and hence also of the other two estimators, in the non-null (dependence) case, is then obtained by using the U-statistics central limit theorem. For specific parametric bivariate distributions, the value of $κ$ can be derived in terms of the natural dependence parameters of these distributions. In particular, we derive the formula for $κ$ when (X,Y) are distributed as Gumbel's bivariate exponential. We bring out various aspects of these estimators through extensive simulations from several prominent bivariate distributions. In particular, we investigate the empirical relationship between $κ$ and the dependence parameters, the distributional properties of the estimators, and the accuracy of these estimators. We also investigate the powers of these measures for testing independence, compare these among themselves, and with other well known such measures. Based on these exercises, the proposed estimator seems as good or better than its competitors both in terms of power and computing efficiency.